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Braided Covariance of the Braided Differential
Bialgebras under Quantized Braided Groups
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The braided differential bialgebras on braided matrix algebras (with both
multiplicative and additive coproducts) and on quantum hyperplanes (with
additive coproduct) are proven to be covariant under the braided coactions of
the quantized braided groups, which contain the usual quantum group-covariance
as a special case. This means that the above braided differential bialgebras have
more and richer symmetries. It is also shown that the braided matrix algebra
itself and the related braided differential algebra constitute two braided rings with
the two above-mentioned coproducts.

1. INTRODUCTION

In recent years there has been a great deal of interest in quantum and
braided differential algebras due to their importance in mathematical physics.
Some quantum (braided) differential bialgebras were studied by many authors
(e.g., Woronowicz, 1989; Brzezinski, 1993; Wess and Zumino, 1990; Baez,
1991; Iseav and Vladimirov, 1995; Vladimirov, 1994; Schlieker and Zumino,
1995; Drabant, 1997) and their covariance with respect to the (co)action of
certain quantum groups was discussed (e.g., Iseav and Vladimirov, 1995;
Wess and Zumino, 1990; Baez, 1991). On the other hand, a kind of more
general algebraic structure called a quantized braided group (QBG) was
proposed more recently by Hlavaty (1994, 1997) and some related algebras
were also investigated (Gao and Gui, 1997; Hlavaty, 1994).

In this paper, we extend these discussions and show that the braided
differential bialgebras on braided matrix algebras (with both additive and
multiplicative coproducts) and on quantum hyperplanes (with an additive
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coproduct) are also covariant with respect to the braided coaction of the
QBG, which contains the coactions of the quantum (unbraided) group and
braided (unquantized) group as two special cases. These mean that the above-
mentioned braided differential bialgebras have more and richer symmetries.
Moreover, we also prove that the braided differential bialgebras on the braided
matrix algebras with additive and multiplicative coproducts have the so-
called braided ring structure.

For convenience, in this paper we use the R-matrix formalism (Faddeev
et al., 1990) and suppose the matrix R is of Hecke type

PRPR 5 lPR 1 1, l 5 q 2 q21 (1.1)

where P is the permutation matrix and q is the quantun deformation parameter.
In Section 2, we recall briefly the notations of the QBG and some

related braided linear algebras. Section 3 proves the covariance of the braided
differential bialgebras under the braided coaction of QBG. The braided ring
structures of the braided differential bialgebrs on the braided matrix algebras
are shown in Section 4. Section 5 is devoted to some conclusions and
discussions.

2. QUANTIZED BRAIDED GROUP

For later use, here we recall some related notations and properties of
the QBG (Hlavaty, 1994). Let T 5 {T i

j}N
i,j51 be a matrix of N 2 elements T i

j

and R, Z P MN ^ MN be a solution of the following set of quantum Yang–
Baxter-type equations:

R12 R13 R23 5 R23 R13 R12, Z12 Z13 Z23 5 Z23 Z13 Z12 (2.1)

R12 Z13 Z23 5 Z23 Z13 R12, Z12 Z13 R23 5 R23 Z13 Z12

Then the quantized braided (matrix) group A(R, Z ) is defined as follows:
(i) A(R, Z ) is a bialgebra generated by {T i

j} and 1 with the relations

R12 Z 21
12 T1 Z12 T2 5 Z 21

21 T2 Z21 T1 R12 (2.2)

D(T i
j) 5 T i

k ^ T k
j , «(T i

j) 5 di
j (2.3)

and the braidings

Z21
12 T 81 Z12 T2 5 T2 Z21

12 T 81 Z12 (2.4)

where D and « are coproduct and counit, and for the braiding relation we
have used the notation a ^ 1 [ a, 1 ^ a [ a8 for any algebraic element a
and a8b 5 C(a ^ b).

(ii) There is an antipode S obeying the axioms
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S(T )T 5 TS(T ) 5 I, S(1) 5 1 (2.5)

In the follwing we write S(T ) as T21.
If A(R, Z ) satisfies the condition (i) only, we call it a quantized braided

(matrix) bialgebra.
For the cases Z 5 I or Z 5 R, the QBG A(R, Z ) reduces to the usual

quantum (matrix) group A(R) (Manin, 1988; Faddeev et al., 1990; Majid,
1990) or braided (matrix) group B(R) (Majid, 1991, 1993), respectively. We
have found the covariance of B(R) (as an algebra) under the braided coaction
of A(R, Z ) (Gao and Gui, 1997). That the quantum covector space V*(R)
[resp., vector space V(R)] generated by {1, xi} (resp. {1, vj}) with relation
qx1 x2 5 x2x1 R12 (resp., qv1v2 5 R12v2v1) is covariant to the QBG has also
been pointed out by Hlavaty (1994). In the next section, we shall extend
these discussions to the differential bialgebras on B(R) and V*(R), etc.

3. A(R, Z) COVARIANCE OF THE BRAIDED DIFFERENTIAL
BIALGEBRAS

We first recall that the differential complex on B(R) is generated by
{1, U i

j, dU i
j} with relations (Iseav and Vladimirov, 1995; Vladimirov, 1994)

R21 U1 R12 U2 5 U2 R21 U1 R12 (3.1a)

R21 U1 R12 dU2 5 dU2 R21 U1 R21
21 (3.1b)

R21 dU1 R12 dU2 5 2dU2 R21 dU1 R21
21 (3.1c)

and the algebra (3.1) admits two coproducts. One of them is multiplicative,

D(U i
j) 5 U i

k ^ U k
j , e.g., DU 5 U ^ U [ UU 8, «(U ) 5 1 (3.2a)

D(dU ) 5 dU ^ U 1 U ^ dU [ dUU 8 1 UdU 8, «(dU ) 5 0 (3.2b)

with the braiding relations

R21
12 U 81 R12U2 5 U2 R21

12 U 81 R12 (3.3a)

R21
12 dU 81 R12U2 5 U2 R21

12 dU 81 R12 (3.3b)

R21
12 U 81 R12 dU2 5 dU2 R21

12 U 81 R12 (3.3c)

R21
12 dU 81 R12 dU2 5 2dU2 R21

12 dU 81 R12 (3.3d)

The other coproduct is additive,

DU 5 U ^ 1 1 1 ^ U [ U 1 Ũ, «(U ) 5 0 (3.4a)

D(dU ) 5 dU ^ 1 1 1 ^ dU [ dU 1 dŨ, «(dU ) 5 0 (3.4b)

with the braiding relations
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R21Ũ1 R12U2 5 U2 R21Ũ1 R21
21 (3.5a)

R21Ũ1 R12 dU2 5 dU2 R21Ũ1 R21
21 2 lP12U1 R12 dŨ2 (3.5b)

R21 dŨ1 R12U2 5 U2 R21 dŨ1 R12 (3.5c)

R21 dŨ1 R12 dU2 5 2dU2 R21 dŨ1 R12 (3.5d)

Here, to distinguish the two coproducts and the related operations, we have
used the different symbols D, D; U 8, Ũ; «, « etc., which remind us that we
are computing in different coalgebraic structures.

The differential algebra (3.1) will be denoted by VB; we also denote the
differential bialgebra defined by (3.1)–(3.3) as VB and that defined by (3.1),
(3.4), (3.5) as VB , i.e., VB [ (VB , D, «), VB [ (VB , D, « ). Moreover for
later use we mention that on VB the antipode S can be introduced as

S(U ) 5 2U, S(dU ) 5 2dU (3.6a, b)

such that VB becomes a braided Hopf algebra (Iseav and Vladimirov, 1995).

Theorem 1. If A(R, Z ) is a QBG as defined in Section 1 and R is of
Hecke type as in (1.1), then the braided differential bialgebras VB and VB

both are covariant under the braided (rigid) coaction of A(R, Z ),

b: U ° b(U ) 5 T 21UT, dU ° b(dU ) 5 T 21 dUT (3.7)

with the following braiding relations:

Z21
12 T 81Z12U2 5 U2Z21

12 T 81Z12, Z21
12 T 81Z12 dU2 5 dU2 Z21

12 T 81Z12 (3.8)

Proof. As explained in Majid (1993) and Gao and Gui (1997), the
notations T21UT, T 21 dUT in (3.7) mean precisely T 218UT8, T 218 dUT8 by
definition and because T and U, dU live in different algebras, there is no
danger of confusing braidings and inverse braidings. Thus, for simplicity, we
suppress the primes on T21 and T in the following calculations.

The A(R, Z ) covariance of the algebraic relation (3.1a) has been verified
by us (Gao and Gui, 1997) in a more general form. Here we consider (3.1b)
and (3.1c). For (3.1b), from (2.2), (2.5), (3.1), and (3.8) we have

R21b(U1)R12b(dU2) 5 R21T 21
1 U1T1R12T 21

2 dU2 T2

5 R21T 21
1 U1Z21

21 T 21
2 Z21R12Z21

12 T1Z12 dU2T2

5 R21T 21
1 Z21

21 T 21
2 Z21U1R12 dU2 Z21

12 T1Z12T2

5 T 21
2 Z21

12 T 21
1 Z12R21U1R12 dU2 Z21

12 T1Z12T2

5 T 21
2 Z21

12 T 21
1 Z12 dU2 R21U1R21

21 Z21
12 T1Z12T2
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5 T 21
2 dU2 Z21

12 T 21
1 Z12R21U1Z21

21 T2Z21T1R21
21

5 T 21
2 dU2 Z21

12 T 21
1 Z12R21Z21

21 T2Z21U1T1R21
21

5 T 21
2 dU2 T2R21T 21

1 U1T1R21
21

5 b(dU2)R21b(U1)R21
21

where the underlines indicate the parts to which the next operations are to
be applied. Similarly, for (3.1c) we can prove that

R21b(dU1)R12b(dU2) 5 2b(dU2)R21b(dU1)R21
21

In addition, it can also be readily shown that the braided comodule coalge-
bra condition

(D ^ 1)b 5 (1 ^ 1 ^ ?)(1 ^ C ^ 1)(b ^ b)D (3.9)

is satisfied for both VB and VB (corresponding to D 5 D and D, respectively)
and all braidings in (3.3) and (3.5) are consistent with the braided coaction
(3.7) of A(R, Z ). As examples, we examine the braidings (3.3b) and (3.5b).
Noting the property of the coaction on tensor products, for (3.3b), from (2.1),
(2.5), (3.7), and (3.8) we have

R21
12 b(dU 81)R12b(U2) 5 R21

12 T 21
1 dU 81 T1R12T 21

2 U2T2

5 R21
12 T 21

1 dU 81 Z21
21 T 21

2 Z21R12Z21
12 T1Z12U2T2

5 R21
12 T 21

1 Z21
21 T 21

2 Z21 dU 81 R12U2Z21
12 T1Z12T2

5 T 21
2 Z21

12 T 21
1 Z12R21

12 dU 81 R12U2Z21
12 T1Z12T2

5 T 21
2 Z21

12 T 21
1 Z12U2R21

12 dU 81 R12Z21
12 T1Z12T2

5 T 21
2 U2Z21

12 T 21
1 Z12R21

12 dU 81 Z21
21 T2Z21T1R12

5 T 21
2 U2Z21

12 T 21
1 Z12R21

12 Z21
21 T2Z21 dU 81 T1R12

5 T 21
2 U2T2R21

12 T 21
1 dU 81 T1R12

5 b(U2)R21
12 b(dU 81)R12

Similarly, for (3.5b) we have
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R21b(Ũ1)R12b(dU2)

5 R21T 21
1 Ũ1T1R12T 21

2 dU2 T2

5 R21T 21
1 Ũ1Z21

21 T 21
2 Z21R12Z21

12 T1Z12 dU2 T2

5 R21T 21
1 Z21

21 T 21
2 Z21Ũ1R12 dU2 Z21

12 T1Z12T2

5 T 21
2 Z21

12 T 21
1 Z12R21Ũ1R12 dU2 Z21

12 T1Z12T2

5 T 21
2 Z21

12 T 21
1 Z12 dU2 R21Ũ1R21

21 Z21
12 T1Z12T2

2 lT 21
2 Z21

12 T 21
1 Z12P12U1R12 dŨ2 Z21

12 T1Z12T2

5 T 21
2 dU2 Z21

12 T 21
1 Z12R21Ũ1Z21

21 T2Z21T1R21
21

2 lP12T 21
1 Z21

21 T 21
2 Z21U1R12Z21

12 T1Z12 dŨ2 T2

5 T 21
2 dU2 Z21

12 T 21
1 Z12R21Z21

21 T2Z21Ũ1T1R21
21

2 lP12T 21
1 U1Z21

21 T 21
2 Z21R12Z21

12 T1Z12 dŨ2 T2

5 T 21
2 dU2 T2R21T 21

1 Ũ1T1R21
21 2 lP12T 21

1 U1T1R12T 21
2 dŨ2 T2

5 b(dU2)R21b(Ũ1)R21
21 2 lP12b(U1)R12b(dŨ2)

Hence we see that both VB and VB are braided A(R, Z )-comodule bialgebras
and the theorem is proved. n

For quantum spaces, as an example, we consider the case on V*(R) [the
cases for V(R) and fermionic hyperplanes are entirely similar]. The braided
differential bialgebra on V*(R), denoted by VV*, is generated by {1, xi , dxi}
with the relations

qx1x2 5 x2x1R12 (3.10a)

x1 dx2 5 q dx2 x1R12 (3.10b)

dx1 dx2 5 2q dx2 dx1 R12 (3.10c)

D̃(x) 5 x ^ 1 1 1 ^ x 5 x 1 x8, «̃(x) 5 0 (3.11a)

D̃(dx) 5 dx ^ 1 1 1 ^ dx 5 dx 1 dx8, «̃(dx) 5 0 (3.11b)

and the braidings

x81x2 5 qx2x81R12, q21x81 dx2 5 dx2 x81R12 1 lx1 dx82 (3.12a, b)

dx81 x2R21 5 qx2 dx81, dx81 dx82 R21 5 2q dx2 dx81 (3.12c, d)
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Theorem 2. Let A(R, Z ) be as in Theorem 1; then the braided differential
bialgebra VV* is covariant with respect to the braided (rigid) coaction b: x °
xT, dx ° dxT with the following braiding relations:

T 81x2 5 x2Z21
12 T 81Z12, T 81 dx2 5 dx2 Z21

12 T 81Z12 (3.13)

Proof. The A(R, Z ) covariance of the algebraic relation (3.10a) has been
pointed out by Hlavaty (1994) in a more general form; the covariance of
(3.10b) is shown as follows: from (2.1) (2.5), and (3.13) we have

b(x1)b(dx2) 5 x1T1 dx2 T2 5 x1 dx2 Z21
12 T1Z12T2

5 q dx2 x1R12Z21
12 T1Z12T2 5 q dx2 x1Z21

21 T2Z21T1R12

5 q dx2 T2x1T1R12 5 qb(dx2)b(x1)R12

Similarly, for (3.10c) we have

b(dx1)b(dx2) 5 2qb(dx2)b(dx1)R12

Moreover, VV* is also a braided A(R, Z )-comodule coalgebra since one
can readily verify that the condition (3.9) is fulfilled [here D 5 D̃; see (3.11)]
and the braidings in (3.12) are consistent with the braided coaction of A(R,
Z ). As an example, for (3.12b), from (2.1), (2.5), and (3.13), we have

q21b(x81)b(dx2) 5 q21x81T1 dx2 T2 5 q21x81 dx2 Z21
12 T1Z12T2

5 dx2 x81R12Z21
12 T1Z12T2 1 lx1 dx82 Z21

12 T1Z12T2

5 dx2 x81Z21
21 T2Z21T1R12 1 lx1T1 dx82 T2

5 dx2 T2x81T1R12 1 lx1T1 dx82T2

5 b(dx2)b(x81)R12 1 lb(x1)b(dx82)

These imply that VV* is a braided A(R, Z )-comodule bialgebra. n

The relations (3.1b), (3.1c), (3.3), (3.5), and (3.12) are not unique (Iseav
and Vladimirov, 1995; Vladimirov, 1994). The discussions for the remaining
relations are completely parallel, so in this paper we only consider the above
cases in detail.

4. BRAIDED RING STRUCTURE OF THE BRAIDED
DIFFERENTIAL BIALGEBRA ON B(R)

As mentioned in Section 3, the braided (matrix) differential algebra (3.1)
admits two coproducts (3.2)–(3.3) and (3.4)–(3.5) (Iseav and Vladimirov,
1995). Now we consider the connection between these coproducts.
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Definition 1. A braided ring is a braided bialgebra (B, D, «) with a
second braided Hopf algebra structure (B, D, «, S), which obeys the codistribu-
tivity axioms

(id ^ +) + DB^B + D 5 (D ^ id) + D,
(4.1)

(+ ^ id) + DB^B + D 5 (id ^ D) + D

where DB^B 5 (id ^ C ^ id) + D ^ D is the coproduct in the braided tensor
product coalgebra relating to D. We call D braided comultiplication and D,
braided coaddition.

Proposition 1. The braided (matrix) bialgebra (B(R), D, «) defined by
(3.1a), (3.2a), and (3.3a) together with another Hopf algebra structure (B(R),
D, «, S) defined by (3.1a), (3.4a), (3.5a), and (3.6a) forms a braided ring.

Proof. The braided (matrix) bialgebra B(R) with the above braided
comultiplication D and braided condition D were introduced by Majid (1991,
1993) and Meyer (1995), respectively. To prove Proposition 1, we have to
prove the codistributivity condition (4.1). On the generators they hold trivially.
On products of the generators, for the first condition of (4.1), from the
relations in B(R) we have

(id ^ +) DB^B D(U1R12U2)

5 (id ^ +) DB^B(U1R12U2 ^ 1 1 U1R12 ^ U2 1 R21
21 U2R21 ^ U1R21

21

1 1 ^ U1R12U2)

5 (id ^ +)(id ^ C ^ id)(U1R12U2R21
12 ^ U1R12U2 ^ 1 ^ 1

1 U1 ^ U1R12 ^ U2 ^ U2 1 R21
21 U2 ^ U2R21 ^ U1 ^ U1R21

21

1 1 ^ 1 ^ U1R12U2R21
12 ^ U1R12U2)

5 U1R12U2R21
12 ^ 1 ^ U1R12U2 1 U1R12 ^ U2R21

12 ^ U1R12U2

1 R21
21 U2R21 ^ U1R21

21 ^ U2R21U1R21
21 1 1 ^ U1R12U2R21

12 ^ U1R12U2

5 (U1R12U2R21
12 ^ 1 1 U1R12 ^ U2R21

12 1 R21
21 U2R21 ^ U1R21

21 R21
12

1 1 ^ U1R12U2R21
12 ) ^ U1R12U2

On the other hand,

(D ^ id) D(U1R12U2)

5 (D ^ id)(U1R12U2 R21
12 ^ U1R12U2)
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5 (U1R12U2 ^ 1 1 U1R12 ^ U2 1 R21
21 U2R21 ^ U1R21

21

1 1 ^ U1R12U2)R21
12 ^ U1R12U2

The second condition and the general cases can be verified in a similar
way. n

Moreover, we find that the statement in Proposition 1 can be extended
to the braided differential bialgebra VB with VB.

Proposition 2. The braided differential bialgebra (VB , D, «), i.e., VB

together with the braided (coadditive) Hopf algebra structure (VB , D, «, S)
given by (3.4)–(3.6) constitutes a braided ring.

Proof. Besides the calculations in the proof of Proposition 1, we need
the calculations on products of other generators. For example, if we consider
the product of U and dU, by using the relations in (VB , D, «, D, «, S), we
have for the first condition in (4.1):

(id ^ +) DVB^VB D(U1R12 dU2)

5 (id ^ +) DVB^VB(U1R12 dU2 ^ 1 1 U1R12 ^ dU2 1 1 ^ U1R12 dU2

1 R21
21 dU2 R21 ^ U1R21

21 2 lR21
21 P12U1R12 ^ dU2)

5 (id ^ +)(id ^ C ^ id)(U1R12 dU2 R21
12 ^ U1R12U2 ^ 1 ^ 1

1 U1R12U2R21
12 ^ U1R12 dU2 ^ 1 ^ 1 1 U1 ^ U1R12 ^ dU2 ^ U2

1 U1 ^ U1R12 ^ U2 ^ dU2 1 1 ^ 1 ^ U1R12 dU2 R21
12 ^ U1R12U2

1 1 ^ 1 ^ U1R12U2R21
12 ^ U1R12 dU2 1 R21

21 dU2 ^ U2R12 ^ U1 ^ U1R21
21

1 R21
21 U2 ^ dU2 R12 ^ U1 ^ U1R21

21 2 lP12R21
12 U1 ^ U1R12 ^ dU2

^ U2 2 lP12R21
12 U1 ^ U1R12 ^ U2 ^ dU2)

5 U1R12 dU2 R21
12 ^ 1 ^ U1R12U2 1 U1R12U2R21

12 ^ 1 ^ U1R12 dU2

1 U1R12 ^ dU2 R21
12 ^ U1R12U2 1 U1R12 ^ U2R21

12 ^ U1R12 dU2

1 1 ^ U1R12 dU2 R21
12 ^ U1R12U2 1 1 ^ U1R12U2R21

12 ^ U1R12 dU2

1 R21
21 dU2 R21 ^ U1R21

21 ^ U2R21U1R21
21 1 R21

21 U2R21 ^ U1R21
21

^ dU2 R21U1R21
21 2 lP12R21

12 U1R12 ^ dU2 R21
12 ^ U1R12U2

2 lP12R21
12 U1R12 ^ U2R21

12 ^ U1R12 dU2

5 (U1R12 dU2 R21
12 ^ 1 1 U1R12 ^ dU2 R21

12 1 1 ^ U1R12 dU2 R21
12
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1 R21
21 dU2 R21 ^ U1R21

21 R21
12 2 lP12R21

12 U1R12 ^ dU2 R21
12 ) ^ U1R12U2

1 (U1R12U2R21
12 ^ 1 1 U1R12 ^ U2R21

12 1 1 ^ U1R12U2R21
12

1 R21
21 U2R21 ^ U1 2 lP12R21

12 U1R12 ^ U2R21
12 ) ^ U1R12 dU2

On the other hand,

(D ^ id) D(U1R12 dU2)

5 (D ^ id)(U1R12 dU2 R21
12 ^ U1R12U2 1 U1R12U2R21

12 ^ U1R12 dU2)

5 (U1R12 dU2 ^ 1 1 U1R12 ^ dU2 1 1 ^ U1R12 dU2

1 R21
21 dU2 R21 ^ U1R21

21 2 lP12R21
12 U1R12 ^ dU2)R21

12 ^ U1R12U2

1 (U1R12U2 ^ 1 1 U1R12 ^ U2 1 1 ^ U1R12U2

1 R21
21 U2R21 ^ U1R21

21 )R21
12 ^ U1R12 dU2

Then the Hecke property (1.1) of R implies the first condition in (4.1) holds.
Similarly, we can verify the second condition and the general cases. n

5. CONCLUSIONS AND DISCUSSIONS

The covariance of the braided bialgebras VB , VB , and VV* with respect
to the coaction of the usual (unbraided) quantum group was considered by
Iseav and Vladimirov (1995). In this paper, we extend those results to more
general cases. We find that VB , VB and VV* are also covariant under the
braided coaction of the quantized braided group A(R, Z ). This extension, in
general, is not trivial because the coaction here is braided. The A(R, Z )
covariance we obtained shows that the braided bialgebras VB , VB , and VV*,
etc., have more and richer symmetries than previously expected; the quantum
group covariance can be given as a special case of the A(R, Z ) covariance
(corresponding to Z 5 I ). Moreover, we also show that the braided bialgebra
(B(R), D, «; D, «, S ) and the braided differential bialgebra (VB , D, «; D, «,
S ) both have the braided ring structure. A similar, but different ring structure
on the usual (unbraided) quantum group A(R) was discussed by Majid (1994).
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