International Journal of Theoretical Physics, Vol. 39, No. 9, 2000

Braided Covariance of the Braided Differential
Bialgebras under Quantized Braided Groups

Ya-Jun Gao*? and Yuan-Xing Gui?

Received November 22, 1999

The braided differential bialgebras on braided matrix algebras (with both
multiplicative and additive coproducts) and on quantum hyperplanes (with
additive coproduct) are proven to be covariant under the braided coactions of
the quantized braided groups, which contain the usual quantum group-covariance
as a specia case. This means that the above braided differential bialgebras have
more and richer symmetries. It is also shown that the braided matrix algebra
itself and the related braided differential algebra constitute two braided rings with
the two above-mentioned coproducts.

1. INTRODUCTION

In recent years there has been a great deal of interest in quantum and
braided differential algebras due to their importance in mathematical physics.
Some quantum (braided) differential bialgebraswere studied by many authors
(e.g., Woronowicz, 1989; Brzezinski, 1993; Wess and Zumino, 1990; Baez,
1991; Iseav and Vladimirov, 1995; Vladimirov, 1994; Schlieker and Zumino,
1995; Drabant, 1997) and their covariance with respect to the (co)action of
certain quantum groups was discussed (e.g., Iseav and Vladimirov, 1995;
Wess and Zumino, 1990; Baez, 1991). On the other hand, a kind of more
general agebraic structure called a quantized braided group (QBG) was
proposed more recently by Hlavaty (1994, 1997) and some related algebras
were also investigated (Gao and Gui, 1997; Hlavaty, 1994).

In this paper, we extend these discussions and show that the braided
differential bialgebras on braided matrix algebras (with both additive and
multiplicative coproducts) and on quantum hyperplanes (with an additive
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coproduct) are also covariant with respect to the braided coaction of the
QBG, which contains the coactions of the quantum (unbraided) group and
braided (unquantized) group as two special cases. These mean that the above-
mentioned braided differential bialgebras have more and richer symmetries.
Moreover, we a so provethat the braided differential bialgebras on the braided
matrix algebras with additive and multiplicative coproducts have the so-
called braided ring structure.

For convenience, in this paper we use the R-matrix formalism (Faddeev
et al., 1990) and suppose the matrix R is of Hecke type

PRPR=APR+1, A=q-q' (1.1)

where P isthe permutation matrix and q isthe quantun deformation parameter.

In Section 2, we recal briefly the notations of the QBG and some
related braided linear algebras. Section 3 proves the covariance of the braided
differential bialgebras under the braided coaction of QBG. The braided ring
structures of the braided differential bialgebrs on the braided matrix algebras
are shown in Section 4. Section 5 is devoted to some conclusions and
discussions.

2. QUANTIZED BRAIDED GROUP

For later use, here we recall some related notations and properties of
the QBG (Hlavaty, 1994). Let T = {T|}N_, be a matrix of N? elements T
and R, Z € My ® My be a solution of the following set of quantum Yang—
Baxter-type equations:

Ri2R13Ro3 = RysRizRu, VAVVALY &y Sl VALVAD: (2- 1)
Ri2Z13Z03 = Zy3Z13Ry5, Z17213Ro3 = Ry3Z137Z45

Then the quantized braided (matrix) group A(R, Z) is defined as follows:
(i) A(R Z) is a bialgebra generated by {T!} and 1 with the relations

R1Z13T1Z15To = Z511 Ty Zo1 T1 Ry, (2.2
A(T) =Tk ®TK &(T)) = 3| (2.3)

and the braidings
VAT A EVAVS PR PYAT o EVAP (2.4)

where A and e are coproduct and counit, and for the braiding relation we
have used the notationa ® 1 = a, 1 ® a = a’ for any algebraic element a
and a'b = ¥(a ® b).

(ii) There is an antipode S obeying the axioms
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ST =THT) =1, S =1 (2.5)
In the follwing we write ST) as T %

If AR, Z) satisfies the condition (i) only, we call it a quantized braided
(matrix) bialgebra.

ForthecasesZ = | or Z = R, the QBG A(R, Z) reduces to the usual
quantum (matrix) group A(R) (Manin, 1988; Faddeev et al., 1990; Mgjid,
1990) or braided (matrix) group B(R) (Majid, 1991, 1993), respectively. We
have found the covariance of B(R) (as an algebra) under the braided coaction
of AR, Z) (Gao and Gui, 1997). That the quantum covector space V*(R)
[resp., vector space V(R)] generated by {1, x} (resp. {1, vj}) with relation
OX1Xo = XoX1Ryo (resp., qvvo = RyoVovy) is covariant to the QBG has aso
been pointed out by Hlavaty (1994). In the next section, we shall extend
these discussions to the differential bialgebras on B(R) and V*(R), etc.

3. A(R, Z) COVARIANCE OF THE BRAIDED DIFFERENTIAL
BIALGEBRAS

We first recal that the differential complex on B(R) is generated by
{1, U}, dUj} with relations (Iseav and Vladimirov, 1995; Vladimirov, 1994)

Ro1UiRioUz = U Ry Ui Ry, (319
Ro1UiRp dU, = dU, Ry U Ry (3.1b)
R2]_ dUl R12 dU2 = _dU2 R21 dUl Rz_ll (31C)

and the algebra (3.1) admits two coproducts. One of them is multiplicative,
A(U)) = Uk® UK, eg, AU=UQU=UU’, gU)=1 (329

A(dU)=du®U +UQ®dU=duu’ + UdU’, gdu)=0 (3.2b)
with the braiding relations

RU1RpU, = URFU IRy, (3.39)
Rt dUj RjpU, = UyRiE dU Ry, (3.3b)
R7U1Ry, dU, = dU; RiFU Ry, (3.3c)
Rz dUj Ry, dU, = —dU; Rzt dU Ry, (3.3d)

The other coproduct is additive,
AU=UR®1+1®U=U+0, &(U) =0 (349

AdU)=du® 1+ 1®dU=du + d0, gdU) =0 (3.4b)
with the braiding relations
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R2101 RpU, = Uy R2101R§11 (3.59)
R»U; Ry, dU, = dU, Ry Uy Rt — APU; Ry, dUs (3.5h)
Ry dU; RipUy = UyRy dU; Ry, (3:5¢)

Ry dU; Ry, dU, = —dU, Ry dU; Ry, (3.5d)

Here, to distinguish the two coproducts and the related operations, we have
used the different symbols A, A; U’, U; 3, ¢ etc., which remind us that we
are computing in different coalgebraic structures.

The differential agebra (3.1) will be denoted by (g; we also denote the
differential bialgebra defined by (3.1)—(3.3) as (g and that defined by (3.1),
(34), (35) as Qg, i.e, Qs = (Qg, A, €), Qs = (g, A, €). Moreover for
later use we mention that on () g the antipode S can be introduced as

SU) = —-U, SdU) = —du (3.6a, b)
such that ) g becomes a braided Hopf algebra (Iseav and Vladimirov, 1995).

Theorem 1. If A(R, Z) is a QBG as defined in Section 1 and R is of
Hecke type as in (1.1), then the braided differential bialgebras Qg and Qg
both are covariant under the braided (rigid) coaction of A(R, Z),

B: U~ BU)=TWT, dU~— pdU)=T1duT (3.7
with the following braiding relations:
Z3T1Z1,Up = UpZ3 T2y, Z3T1Zy, dU, = dU, 25 T1Zy, (3.8
Proof. As explained in Magjid (1993) and Gao and Gui (1997), the
notations TUT, T~ dUT in (3.7) mean precisely T-YUT’, T-Y dUT’ by
definition and because T and U, dU live in different algebras, there is no
danger of confusing braidings and inverse braidings. Thus, for simplicity, we
suppress the primes on T-* and T in the following calculations.
The A(R, Z) covariance of the algebraic relation (3.1a) has been verified

by us (Gao and Gui, 1997) in a more general form. Here we consider (3.1b)
and (3.1c). For (3.1b), from (2.2), (2.5), (3.1), and (3.8) we have

RotB(U)RB(AU,) = Ry T1 U TiR, T dU, T,

= R T1 U1 Zo T2 21 R10Z15 12y, AU, T,

= Ry T1Z51T 32U Ry, dU, 23 T1Z4,T,

= T3 23T 1 "Z1oRnUsRyp AU, Z33 T Z55T,

= T2 7121, AU, RyUi R 235 T Z4,T,
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= Ty dU, Zi3 T 1 1 Z1oRn Ui 2o ToZ oy TiRo

= T2t dU, Zi T 1 2Z10Rn 2o ToZ Ui Th Ry

= Ty dU, TRy T1 U TR
= B(dU2)Rx1B(U1)Rot

where the underlines indicate the parts to which the next operations are to
be applied. Similarly, for (3.1c) we can prove that

Ro1B(dU1)RpB(AU) = —B(dU2)R,.B(dU) Ry

In addition, it can aso be readily shown that the braided comodule coalge-
bra condition

ARDB=(1®10)1® V¥R I(PB XP)A (3.9
is satisfied for both Qg and Q 5 (correspondingto A = A and A, respectively)
and al braidings in (3.3) and (3.5) are consistent with the braided coaction
(3.7) of A(R, Z). As examples, we examine the braidings (3.3b) and (3.5b).

Noting the property of the coaction on tensor products, for (3.3b), from (2.1),
(2.5), (3.7), and (3.8) we have

R B(AUDRB(UL) = R T dU  TiRT; MULT,

= R T dU ZoT 51 251 RipZ17 T1Z3,U, T,

= R T 124 T3 2y dU | RpUZi5 12551,

= T 123 T1ZRF dU | RpULZi3 TiZs,T,
= T2 T1Z1,U,R dU | RipZi3 TiZy,T,
= T3 oZi3 T 2R dU | Zo T2, TiRy,

= T3 Zi3 T 2R 251 o2y dU 1 TiRy,

= T, W, T,RZFT11 dUf TRy,
= B(Ux)RFB(AU YRy,

Similarly, for (3.5b) we have
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RosB(U1)RyzB(dU,)
= RleflolTlRlzTil du, T,

= RyT1 0 1Zot' T 3 "2y R1pZ17 124, dU, T,

= Ry T1Z51T5'Z2,0,Ry, dU, Z4T1Z4,T,

= T,1Z74T1 1Z12F32101R12 dU, Z T2, T,

= T3'Z3 712, dUy RyUiRAZ14T1 24,5,

— NT2'Z3 111 Z1,P U R dUz 217112151,

= T2 dUy ZiAT 1 Z15Rn U Zo ToZ oy Ta R
— NPT 11254 T 5 20 Ui R Zi5 T Zy, doz T,

= To1dU, Z5' Ty 1Z12R2122711-|-2221L~J1T1R271l

— NPy, T1 WU Zo T 51200 Ry5Z33 1125, dU, T

= T,1dU, T2R21T5101T1R2’11 — AP TTUI TR, T, doz T,

= B(dU)R:1B(U)R: — NP1B(U1)RB(dU,)

Hence we see that both Q) and Qg are braided A(R, Z)-comodule bialgebras
and the theorem is proved. m

For quantum spaces, as an example, we consider the case on V*(R) [the
cases for V(R) and fermionic hyperplanes are entirely similar]. The braided
differential bialgebra on V*(R), denoted by (., is generated by {1, x;, dx}
with the relations

OX1Xo = XoX1Ryo (3.109)
X1 X, = g dX, X1Ry (3.10b)
dx, dx, = —q dx, dx; Ry, (3.10c)
AX)=x®1+1®x=x+x, &X) =0 (3.11a)

A(dx) = dx ® 1 + 1 ® dx = dx + dx’, g(dx) = 0 (3.11b)
and the braidings
XiXo = OXoX1Ryo, g 1 dx, = dx, XiR, + AXq dx5 (3.12a, b)

dx1 XoRo = X, dX4, dxi dxs Ry = —q dX, dxy (3.12c, d)
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Theorem 2. Let A(R, Z) be asin Theorem 1; then the braided differential
bialgebra )\~ is covariant with respect to the braided (rigid) coaction B: x —
XT, dx — dxT with the following braiding relations:

TiXo = XoZi3 T1Zyo, Tidx, = dx, Zi3'T1Zy, (3.13)

Proof. The A(R, Z) covariance of the algebraic relation (3.10a) has been
pointed out by Hlavaty (1994) in a more general form; the covariance of
(3.10b) is shown as follows: from (2.1) (2.5), and (3.13) we have

B(x)B(dXz) = X1 Ty dXp To = Xq AXp Z15'T1Z35T,

= q dXp X1R12Z17 T1Z15T, = q AX X121 T2 T1Re2

= g dx; ToXiTaRy = gR(dX2)B(X1)Rez
Similarly, for (3.10c) we have
B(dxy)B(dxz) = —aB(dx2)B(dX1)Re

Moreover, ()~ is aso a braided A(R, Z)-comodule coa gebra since one
can readily verify that the condition (3.9) isfulfilled [here A = A; see (3.11)]
and the braidings in (3.12) are consistent with the braided coaction of A(R,
Z). As an example, for (3.12b), from (2.1), (2.5), and (3.13), we have

q 'BXD)B(dxy) = g xiTy dx, T, = q %1 dxp Zi5'TiZy, T,
= X XiR1Z13 T1Z15T, + NXq dX) Z35' T1Z35 T,
= dXp X1Zo1 ToZy TiR + ATy dxs T,
= dxp ToX1T1R + AX( Ty dXaTo

= B(Axz)B(XDRe2 + AB(X1)B(dX3)
These imply that Q. is a braided A(R, Z)-comodule bialgebra. =

Therelations (3.1b), (3.1¢), (3.3), (3.5), and (3.12) are not unique (Iseav
and Vladimirov, 1995; Vladimirov, 1994). The discussions for the remaining
relations are completely parallel, so in this paper we only consider the above
cases in detail.

4. BRAIDED RING STRUCTURE OF THE BRAIDED
DIFFERENTIAL BIALGEBRA ON B(R)

Asmentioned in Section 3, the braided (matrix) differential algebra(3.1)
admits two coproducts (3.2)—(3.3) and (3.4)—(3.5) (Iseav and Vladimirov,
1995). Now we consider the connection between these coproducts.
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Definition 1. A braided ring is a braided bialgebra (B, A, ) with a
second braided Hopf algebrastructure (B, A, &, S), which obeysthe codistribu-
tivity axioms

(id ® o) o Aggg o A = (A ® id) o &,
(c ®id) o Agggo A = (id® A) o &

(4.1)

where Aggs = (Id ® ¥ ® id) e A ® A isthe coproduct in the braided tensor
product coalgebra relating to A. We call A braided comultiplication and A,
braided coaddition.

Proposition 1. The braided (matrix) bialgebra (B(R), A, ) defined by
(3.19), (3.29), and (3.3a) together with another Hopf algebra structure (B(R),
A, g, S) defined by (3.1a), (3.4a), (3.53), and (3.6a) forms a braided ring.

Proof. The braided (matrix) bialgebra B(R) with the above braided
comultiplication A and braided condition A were introduced by Majid (1991,
1993) and Meyer (1995), respectively. To prove Proposition 1, we have to
provethe codistributivity condition (4.1). On the generatorsthey hold trivially.
On products of the generators, for the first condition of (4.1), from the
relations in B(R) we have

(id ® ©) Apgp A(U;RpUy)
= (id ® ©) Aggp(UiRiU, ® 1+ UiRy, @ Up + RytUoRy @ UiRyf!
+ 1 ® UiRppUy)
= (i[d® 9)(d ® ¥ ® id)(U;RpU,RE @ URpU, ® 1® 1
+ U Q@ UiRL, @ U, ® U, + RyftU, ® UsRyy ® Uy ® UjRyE
+1® 1® URpURE ® UsRU)
= U;RpURE ® 1 ® U RU, + UiRp, @ URE @ UjRU,
+ RtULRy @ UiRyE Q@ U,RnUIR: + 1 @ U R ULRE @ UiRiU,
= (U1RpULRE @ 1 + UsRy, ® URiF + RytULRy ® Ui RIRG
+ 1 ® U;RpULRE) ® UiRyU,
On the other hand,
(A ® id) AURLUY)
= (A ® id)(U1RpU; Rt ® UiRpUy)
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+ 1 ® URpU )R ® UiRpU,

The second condition and the general cases can be verified in a similar
way. =

Moreover, we find that the statement in Proposition 1 can be extended
to the braided differential bialgebra Qg with Q5.

Proposition 2. The braided differential bialgebra (Qg, A, &), i.e, Qg
together with the braided (coadditive) Hopf algebra structure (Qg, A, g, S
given by (3.4)—(3.6) constitutes a braided ring.

Proof. Besides the calculations in the proof of Proposition 1, we need
the calculations on products of other generators. For example, if we consider
the product of U and dU, by using the relations in (Qg, A, &, A, g, S), we
have for the first condition in (4.1):

(i[d®¢) Aggeag A(U1R12dU,)

— (id®°) Bagong(UiRdU;® 1 + U;Ry, ® dU, + 1@ UsRy, dU,
+ Ror" dU;, Ry ® Ui Rt — ARy'P1pUs Ry, @ dU,)

— (id®9)(id® ¥ @id)(U;Ry, dU, R ® UsR,U, @ 1® 1
+ U;RpULRE ® U R dU,®1® 1+ U Q UiR L, ® dU,® Uy
+U; Q@ U;R,Q U, Q@dU, + 1® 1Q U Ry, dU, R @ Ui RU,
+1Q®1Q U;RLULREF ® U Ry, dU, + Ryt dU, @ ULR, @ U, @ Uy Ryt
+ Ry:tU, ® dU, Ry, @ Uy @ U Ryt — APpRAU; ® Uy Ry, ® dU,
® Uy — APREAU; ® UyRy, ® U, ® dU)

= U R, dU, RZ ® 1® U R,U, + U RpULRG ® 1Q U Ry, dU,
+ U;R, @ dU, RF @ U R,U, + U Ry, @ UsRi @ U Ry, dU,
+1® U Ry, dU, R @ U;R,U, + 1@ U R ULRE @ U Ry, dU,
+ R dU; Ry ® U Rot* @ URo UsRot + Ret'UoRpy @ U Ryt
& dU, Ry U Rt — AP1,Ri7 U R @ dU, Rz ® U4 Ry,U,
— APLRFURL ® URE ® UsR, dU,

= (U;RpdU,RF ® 1+ URL, ® dU, R + 1® U R, dU, R
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+ Ryt dU, Ry @ U5 RyIR — AP1,R7 U Ry, @ dU, R @ Ui RU,
+ (U1RLULRZ @ 1+ U R, ® ULR + 1@ U R ULR
+ RytUR» @ Uy — APRi7 U R, ® ULRE) @ U Ry, dU,
On the other hand,
(A ®id) A(U;Ry, dUy)
= (A ®id)(U;R;2 dU, Ri7 @ U RpU, + Ui R ULRE @ URy, dUS)
= (URpdU, ® 1 + U;R, ®dU, + 1 & U;R;, dU,
+ Ryt dU, Ry @ U Ry — AP,-Ri7ULR, ® dUL)RE @ UiRLU,
+ (URpU, ® 1+ UiR, ® Us + 18 UiRU,
+ Ra'UoRy ® UsRDR @ UsRy, dU,

Then the Hecke property (1.1) of R implies the first condition in (4.1) holds.
Similarly, we can verify the second condition and the general cases. =

5. CONCLUSIONS AND DISCUSSIONS

The covariance of the braided bialgebras Qg, Q g, and Qy~ with respect
to the coaction of the usual (unbraided) quantum group was considered by
Iseav and Vladimirov (1995). In this paper, we extend those results to more
general cases. We find that Qg, Qg and Q- are also covariant under the
braided coaction of the quantized braided group A(R, Z). This extension, in
general, is not trivial because the coaction here is braided. The AR, Z)
covariance we obtained shows that the braided bialgebras Qg, Qg, and Qy-,
etc., have more and richer symmetries than previously expected; the quantum
group covariance can be given as a specia case of the A(R, Z) covariance
(corresponding to Z = 1). Moreover, we also show that the braided bialgebra
(B(R), A, &; A, &, S) and the braided differential bialgebra (Qg, A, 7, A, &,
S) both have the braided ring structure. A similar, but different ring structure
on the usual (unbraided) quantum group A(R) was discussed by Mgjid (1994).

ACKNOWLEDGMENTS

Thiswork was supported by the National Natural Science Foundation of
Chinaand the Science Foundation of the Educational Committee of Liaoning
Province, China.



A(R, Z) Covariance of Differential Bialgebras 2189

REFERENCES

C. Baez (1991). Letters in Mathematical Physics, 22, 133.

Brzezinski (1993). Letters in Mathematical Physics, 27, 287.

. Drabant (1997). Journal of Mathematical Physics, 38, 2652.

. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtgjan (1990). Leningrad Mathematical
Journal, 1, 193.

.J. Gao and Y. X. Gui (1997). Journal of Mathematical Physics, 38, 5960.

. Hlavaty (1994). Journal of Mathematical Physics, 35, 2560.

. Hlavaty (1997). International Journal of Modern Physics A, 12, 5161.

. P. Iseav and A. A. Vladimirov (1995). Letters in Mathematical Physics, 33, 297.

Majid (1990). International Journal of Modern Physics A, 5, 1.

Majid (1991). Journal of Mathematical Physics, 32, 3246.

Majid (1993). Journal of Mathematical Physics, 34, 1176.

u. I. Manin (1988). Quantum Group and Non-commutative Geometry. Technical Report,
Centre de Recherches Mathematiques, Montreal, Canada.

U. Meyer (1995). Communications in Mathematical Physics, 168, 249.

M. Schlieker and B. Zumino (1995). Letters in Mathematical Physics, 33, 33.

A. A. Viadimirov (1994). Journal of Physics A: Mathematical and General, 27, 4479.

J. Wess and B. Zumino (1990). Nuclear Physics B, 18, 302.

S. L. Woronowics (1989). Communications in Mathematical Physics, 122, 125.

>rrrr < rwH~

<nunon



